
Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates
in random potentials

S. Palpacelli1 and S. Succi2
1Dipartimento di Matematica, Università Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy

2Istituto Applicazioni del Calcolo, Viale Policlinico 137, 00161 Roma, Italy
�Received 18 February 2008; published 20 June 2008�

The phenomenon of Anderson localization in expanding one-dimensional Bose-Einstein condensates is
investigated by numerically solving the Gross-Pitaevskii equation with a random speckle potential. To this
purpose, a quantum lattice Boltzmann �QLB� method is used, and compared with a standard Crank-Nicolson
scheme. The QLB simulations show evidence of Anderson localization even for relatively low-energy conden-
sates, with a healing length as large as one-tenth of the Thomas-Fermi length. Moreover, very long-time
simulations, lasting up to 15 000 optical confinement periods, indicate that the Anderson localization degrades
in time, although at a very slow pace. In particular, the inverse localization length is found to decay according
to a t−1/3 law. This lends support to the idea that localized wave functions, although not strictly ground states,
represent extremely long-lived metastable states of the expanding condensate.
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I. INTRODUCTION

The study of the dynamics of Bose-Einstein condensates
�BECs� in the presence of a random potential is a very active
topic in modern condensed matter and atomic physics re-
search. Recently, a large number of experimental and nu-
merical studies have been devoted to the localization prop-
erties of Bose gases �1–9�. It is well known that disorder can
profoundly affect the behavior of quantum systems, Ander-
son localization being one of the most fascinating phenom-
ena in point �10�. Back in 1958, Anderson showed that the
eigenstates of single quantum particles in a weak random
potential can become localized, which means that the corre-
sponding wave functions exhibit an exponential decay at
large distances �1�. Indeed, strong suppression of transport
phenomena in expanding BECs in the presence of disorder
has been recently observed experimentally and confirmed by
numerical simulations �3–8�. However, this suppression of
transport is not due to Anderson localization, but rather to the
fragmentation of the BEC, as it gets trapped between the
peaks of the random potential. In Ref. �11�, a theoretical and
numerical study prescribes the conditions under which a one-
dimensional BEC can exhibit Anderson localization. These
conditions basically amount to requiring that the amplitude
of the random potential be sufficiently large to promote de-
structive interference between freely propagating plane
waves, and yet significantly smaller than the condensate en-
ergy, so as to avoid disruptive fragmentation of the wave
function. In addition, the correlation length of the random
potential should be smaller than the healing length of the
condensate �the scale below which kinetic energy is domi-
nant�, so that noise can couple to a sizable fraction of the
spectrum of kinetic-energy carriers.

The aim of this work is to further investigate these con-
ditions by means of a quantum lattice Boltzmann �QLB�
model. Originally, the QLB method was developed starting
from a formal analogy between the Dirac equation and a
Boltzmann equation for a complex distribution function
�12–14�. A major feature of the QLB model is that unitarity

and stability can be achieved with a time step scaling linearly
with mesh size rather than quadratically as in most explicit
schemes for quantum wave functions �15�. Recently, a mul-
tidimensional formulation of the QLB scheme has been pro-
posed and also extended to the case of nonlinear interactions,
as described by the Gross-Pitaevskii equation �GPE� �16,17�.

In the past decade, many different numerical approaches
have been applied to the solution of the time-dependent
GPE, e.g., a particle-inspired scheme proposed by Chiofalo
et al. �18,19�, finite difference methods proposed by Rupre-
cht et al. �20�, Ensher et al. �21�, and Wang �22�, and a
time-splitting spectral �TSSP� method developed by Bao and
co-workers initially for the Schrödinger equation in the semi-
classical regime �23,24� and then extended to the GPE
�25,26�. In particular, the TSSP method shows good proper-
ties of accuracy and efficiency.

In the present work we explore the use of the QLB
method for the case of nonlinear interactions with random
potentials. A systematic comparison with the classical Crank-
Nicolson �CN� scheme is also presented, in order to validate
QLB numerical results and assess the computational perfor-
mances at different space-time resolutions. Finally, we inves-
tigate the mechanism by which the localized state of the
BEC is modified by the residual self-interaction in the �very�
long-time evolution of the condensate.

II. REVIEW OF THE QUANTUM LATTICE
BOLTZMANN MODEL

The quantum lattice Boltzmann model proposed in Refs.
�12–14� is based on a formal analogy between the Dirac
equation and the discrete kinetic equation known as the lat-
tice Boltzmann equation. In particular, it is possible to show
that the nonrelativistic Schrödinger equation ensues from the
relativistic Dirac equation in the adiabatic limit where anti-
symmetric fast modes are enslaved to the symmetric slow
ones.

The procedure outlined in Ref. �12� to extend the model
to two and three spatial dimensions has been recently tested
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against numerical simulations �16�. An imaginary-time ver-
sion of the QLB model has also been proposed �17� to com-
pute the ground state solution of the Gross-Pitaevskii equa-
tion by applying, to the time-dependent GPE, a
transformation known as Wick rotation �27–29�.

The real-time QLB model

Let us recall the main ideas behind the quantum lattice
Boltzmann scheme in one dimension. Consider the Dirac
equation in one dimension. Using the Majorana representa-
tion �30� and projecting upon chiral eigenstates, the Dirac
equation reads

�tu1,2 + c�zu1,2 = �cd2,1 + igu1,2,

�td1,2 − c�zd1,2 = − �cu2,1 + igd1,2, �1�

where u1,2 and d1,2 are complex wave functions composing
the Dirac quadrispinor �= �u1 ,u2 ,d1 ,d2�T, and �c=mc2 /� is
the Compton frequency, g=qV /� is the space-dependent fre-
quency coupling to the external potential V, and q is the
particle electric charge. Since we restrict our attention to
electrostatic potentials, the spinorial indices will be dropped
in the following.

As observed in Ref. �12�, Eq. �1� is a discrete Boltzmann
equation for a pair of complex wave functions u and d. In
particular, the propagation step consists of streaming u and d
along the z axis with opposite speeds �c, while the collision
step is performed according to the scattering matrix defined
by the right-hand side of Eq. �1�.

Nonrelativistic motion is reproduced by the model in the
adiabatic �low-frequency� limit:

�� − �c� � ��c + g� , �2�

where � is the typical frequency �energy� of the solution �.
With the additional constraint of “small” potential interaction

�g� � �c, �3�

it can be shown that the “slow” mode �to be defined shortly�
dynamics is governed by the Schrödinger equation for a
spinless particle of mass m. In particular, under the unitary
transformation

�� =
1
�2

exp�i�ct��u � id� ,

from Eq. �1� it is easy to check that the following equations
are satisfied:

�t�
+ + c�z�

− = ig�+,

�t�
− + c�z�

+ = 2i�c�
− + ig�−. �4�

From Eq. �4�, after adiabatic elimination of the “fast” anti-
symmetric mode

��t�
−� � �2�c + g���−� ,

we obtain

i��t�
+ = −

�c2

2�c
�z� 2�c

2�c + g
�z�

+� − qV�+

	 −
�2

2m
�z

2�+ − qV�+, �5�

where the last approximation in Eq. �5� is valid in the small
potential interaction limit given by Eq. �3�.

The QLB scheme is obtained by integrating Eq. �1� along
the characteristics of u and d, respectively, and approximat-
ing the right-hand side integral by using the trapezoidal rule.
Assuming �z=c�t, the following scheme is obtained:

û − u =
m̃

2
�d + d̂� +

ig̃

2
�u + û� ,

d̂ − d = −
m̃

2
�u + û� +

ig̃

2
�d + d̂� , �6�

where û=u�z+�z , t+�t�, d̂=d�z−�z , t+�t�, u=u�z , t�, d
=d�z , t�, m̃=�c�t, and g̃=g�t . The linear system of Eq. �6�
is algebraically solved for û and d̂ and yields the explicit
scheme

û = au + bd ,

d̂ = ad − bu , �7�

where

a = �1 − 	/4�/�1 + 	/4 − ig̃�, b = m̃/�1 + 	/4 − ig̃� ,

with 	= m̃2− g̃2. Here m̃=�c�t represents the dimensionless
Compton frequency. Note that, since �a�2+ �b�2=1, the colli-
sion matrix is unitary, the method is unconditionally stable
and norm preserving. In particular, the quantity 
�+
2

+ 
�−
2, where 
 · 
 indicates the L2 norm, is kept at unit value
throughout the evolution. It follows that 
�+
2 cannot be pre-
served during the evolution. Indeed, we have 
�−
� 
�+

with both terms oscillating in such a way that 
�+
2+ 
�−
2

=1.

III. THE GROSS-PITAEVSKII EQUATION

At zero temperature, the dynamics of a trapped Bose-
Einstein condensate is described by the time-dependent
Gross-Pitaevskii equation. The GPE for a quantum wave
function ��r , t�, with r= �x ,y ,z�T�R3, reads as follows:

i��t��r,t� = �−
�2

2m
�r + Vext�r� + NU0���r,t��2���r,t� ,

�8�

where m is the atomic mass, U0=4
�2a /m is the coupling
strength, a is the scattering length, N is the number of par-
ticles in the condensate, and Vext�r� is the external trapping
potential.

Typically, the external potential is taken in the form of a
harmonic trap:
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Vext�x,y,z� =
1

2
m��x

2x2 + �y
2y2 + �z

2z2� .

The three-dimensional GPE can be easily reduced to one
dimension for a particular choice of the harmonic trap
�18,31–34�. In particular, for �x=�y ��� and �z���, the
GPE of Eq. �8� is transformed into

i��t��z,t� = �−
�2

2m
+ Vext�z� + NU1���z,t��2���z,t� , �9�

where U1=2a��� is the one-dimensional coupling constant
equivalent to the three-dimensional one and Vext�z�
= �1 /2�m�z

2z2. In order to numerically solve Eq. �9� by using
the QLB and CN schemes, the so-called QLB scaling �17� is
applied to Eq. �9�.

QLB scaling

The QLB scaling is defined by

t̂ =
t

�t
, ẑ =

z

�z
, �̂�z,t� = ��z�1/2��z,t�, �̂z = �z�t,

where �z and �z are the discretization steps in physical units.
From �̂z=�z�t, the time step is readily computed, �t
= �̃z /�z. As observed in Ref. �17�, since the relation �z=c�t
must hold, it is apparent that in order to simulate physical
situations c must be taken much smaller than the physical
light speed. Otherwise, we would need a very small time step
to achieve a reasonable �z. In particular, from the definition
of the model parameter m̃=�c�t= �mc2 /���t, we have

c2 =
m̃�

m�t
,

and then

�z = c�t = � m̃�

m�t
�1/2

�t.

By applying this scaling to Eq. �9� and removing all the ~,
we obtain

i�t��z,t� = �−
1

2m̃
�z

2 +
1

2
m̃�z

2z2 + �QLB���z,t��2���z,t� ,

where the nonlinearity coupling constant �QLB is given by

�QLB =
2az

2a�zN

�za�
2 ,

with az=�� / �m�z� and a�=�� / �m���. From the above ex-
pression, it is clear that the adiabatic assumption underlying
the QLB theory sets a limit on the strength of the nonlinear
interactions, i.e., on the number of bosons, N. More pre-
cisely, the high-energy components of the wave functions
evolve according to a second-order hyperbolic �Klein-
Gordon� equation, rather than to the first-order parabolic
�Schrödinger� diffusive dynamics.

IV. ANDERSON LOCALIZATION OF EXPANDING BEC
IN SPECKLE POTENTIAL

The aim of this work is to apply the QLB scheme to the
study of an expanding BEC in the presence of disorder. As is
well known, quantum systems can be highly affected by dis-
order, one of the most famous phenomena that may occur
being Anderson localization �10�, whereby the eigenstates of
single quantum particles in a weak random potential can be-
come localized, i.e., the eigenstates exhibit an exponential
decay at large distances �1�. In one spatial dimension, the
entire wave function is localized, i.e. all eigenstates are lo-
calized. Recently, both experimental and numerical studies
have been devoted to the localization of Bose gases �1–7� in
order to fully understand the interplay between nonlinear in-
teractions and disorder. The strength of the interaction is
characterized by the inverse ratio of the initial healing length
h=� /�4m� to the Thomas-Fermi length LTF=�2� /m�z

2,
where � is the chemical potential, m the boson mass, and �z
the longitudinal frequency of the optical trap �1�. The prop-
erties of a random potential are summarized by its intensity
VR and correlation length �R.

As shown in Ref. �11�, for �R�h and for a weak disorder
VR /��1, a one-dimensional BEC can exhibit Anderson lo-
calization. As observed in Ref. �11�, localization of a BEC in
a random potential was already reported in Refs. �3–5�.
However, in this case, suppression of transport was not due
to Anderson localization, but rather to the fragmentation of
the BEC, as a result of trapping between the peaks of the
potential.

Following the model proposed in Ref. �11�, we consider a
one-dimensional Bose-Einstein condensate trapped in a har-
monic potential in the presence of a random potential V�z�.
The corresponding Gross-Pitaevskii equation reads as fol-
lows:

i��t��z,t� = �−
�2

2m
�z

2 +
1

2
m�z

2z2 + V�z�

+ NU1���z,t��2 − ����z,t� , �10�

where U1 is the coupling constant and � is the chemical
potential. The random potential V�z� is taken in the form of a
one-dimensional speckle potential �6,35–37�, with a trun-
cated negative exponential single-point distribution:

P�V� =
exp�− �V + VR�/VR�

VR
�� V

VR
+ 1� , �11�

where � is the Heaviside step function. The average of V
over the disorder vanishes, while �V2=VR. The correlation
function C�z�= �V�z��V�z�+z� can be written as a function
of the correlation length of the potential, �R. For a speckle
potential produced by diffraction through a square aperture
�5,35�, the autocorrelation function reads as follows:

C�z� = �V�z��V�z� + z� = VR
2sinc2�z/�R� , �12�

where sinc�x�ªsin�x� /x and �· stands for integration over z�
and averaging over many realizations.
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Initially, the BEC is assumed to be at equilibrium in the
harmonic trap; then the harmonic trap is removed and the
BEC starts to freely expand. At time t�1 /�z, the random
potential is switched on. Starting from this model, in Ref.
�11� it is shown that, for �R�h and when the random po-
tential satisfies the condition

VR � ��h/�R�1/2, �13�

the BEC wave function undergoes Anderson localization. In
particular, the large-distance asymptotic behavior of the
wave-function density n�z� is given by

n�z� � �z�−3/2exp�− 2��1/h��z�� , �14�

where ��k�=1 /L�k� is the Lyapunov exponent and L�k� is the
localization length. In Ref. �11�, an approximation to ��k� is
computed and related to the correlation properties of the dis-
order. For the speckle potential used in this work, one has
�11�

��k� � �0�k��1 − �k��R���1 − �k��R�, �0�k� =

m2VR

2�R

2�4k2 .

�15�

V. NUMERICAL RESULTS

The time evolution of the BEC wave function is traced by
solving Eq. �10� by means of the QLB and CN schemes. We
observe that the QLB model is designed so as to solve Eq.
�10� in the QLB scaling, whereby c�t /�z=1, so that �z and
�t scale linearly with each other. The unitarity of the colli-
sion matrix implies that the scheme is unconditionally stable
and norm preserving for any value of �z=c�t. The CN is an
implicit scheme, and hence unconditionally stable, although
its accuracy depends on the diffusion Courant-Friedrichs-
Lewy �CFL� coefficient CD= D�t

��z�2 , where D=� / �2m� and
the potential CFL coefficient CV= V�t

� , where V=VR
+NU1maxz����z��2�. We solve Eq. �10� with the QLB scaling
by using both QLB and CN schemes and we increase time
and space resolution while keeping �z=�t �c=1 in atomic
units� as required by the QLB model.

As observed in Sec. II, the real-time QLB scheme solves
the GPE in the limit of small potential interaction. Hence,
large values for the coupling constant �QLB violate the adia-
batic assumption. This implies limitations to the ratio be-
tween LTF and h, where LTF=�2� /m�z

2 is the Thomas-
Fermi half-length. In practice, the QLB method is
constrained to ��LTF /h�10.

In particular, for the present simulations, the parameters
are set as follows:

�z = 5 � 10−3, �QLB = 2, m̃ = 1/4.

This setup delivers �=0.019 43, LTF=78.85, and h=7.17.
The domain length is set to L=32 000�400LTF and the
simulation span at T=150 /�z=30 000. As a result, �
=10.997 and we set VR=0.2� and �R=0.5h, so that �R
�h and the conditions of Eq. �13� are satisfied.

As previously mentioned, localization of an expanding
BEC in random potentials has been experimentally observed

in Refs. �3–5,8,9�. However, in those experiments, the pa-
rameter setting does not satisfy the condition �R�h and the
constraint of Eq. �13�, which are crucial in order to detect the
Anderson localization phenomenon �11�. Nonetheless, the
parameter setting proposed in Ref. �11� and used here is defi-
nitely accessible in current experiments. Indeed, recent ex-
periments reported in Ref. �38� have investigated this range
of parameters and reported clear evidence of Anderson local-
ization, in good agreement with the theoretical predictions of
Refs. �11,39�. In particular, in the experiment of Ref. �38�,
the authors consider a BEC composed of N=1.7�104 atoms
of 87Rb with an initial chemical potential � / �2
��
=219 Hz. The BEC is initially trapped by an elongated har-
monic potential with a transverse frequency �� / �2
�
=70 Hz and a longitudinal frequency �z / �2
�=5.4 Hz.
This implies a Thomas-Fermi half-length LTF=41.75 �m
and an initial healing length h=0.364 �m, thus yielding a
separation scale �=114. The speckle potential can be accu-
rately controlled in order to attain specific values for the
mean intensity VR and correlation length �R. In Ref. �38�, the
mean intensity is tuned so that VR /� varies in the range
0.07−0.34, while the correlation length is set at �R
=0.26 �m, thus satisfying the condition �R�h and the
constraint of Eq. �13�. With this setting, the exponential lo-
calization is clearly observed and the localization length Lloc
is found to vary from about 2 to 0.25 mm, while the mean
intensity of the speckle potential VR is increased.

In our simulations, we are considering a more weakly
interacting BEC, which could be experimentally achieved by
decreasing the interatomic interaction either by density con-
trol �i.e., lower number of atoms� or by Feshbach resonances
�38�. In particular, by leaving all the other parameters un-
changed, we are simulating a BEC with � / �2
��=21 Hz,
which delivers LTF=13 �m and h=1.18 �m, thus yielding
��11. As we shall see below, with this setting we obtain a
localization length Lloc=1.19 mm for VR /�=0.2. In conclu-
sion, our set of parameters is representative of current BEC
experiments, although with possibly a weaker nonlinearity,
i.e., narrower separation between the outer and inner length
scales, LTF and h, respectively. As we shall demonstrate, a
scale separation ��10 is nonetheless sufficient to yield clear
evidence of Anderson localization.

In Fig. 1, we present the averaged wave function for five
different values of the separation parameter �. From this fig-
ure, a clear delocalization trend with decreasing values of �
is observed.

The separation parameter � is changed by tuning the cou-
pling constant �QLB. By changing �QLB, the chemical poten-
tial � is also changed and, consequently, LTF and h are
modified. Parameters are chosen in such a way that the ratios
VR /� and �R /h are kept at 0.2 and 0.5, respectively. Dis-
cretization steps are chosen so that a sufficient resolution is
achieved. In particular, numerical experiments show that sat-
isfactory results are obtained for R�5, where R�h /�z is
the resolution parameter. This has been set to the following
values:

� = 1, R = 23.78 ��z = 1�;

� = 5, R = 10.63 ��z = 1�;
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� = 10, R = 7.16 ��z = 1�;

� = 20, R = 10.62 ��z = 0.5�;

� = 50, R = 6.72 ��z = 0.5� .

For ��10, an unphysical pileup on the tails of the wave
function is observed, which is due to the lack of adiabaticity
of the fast �high-frequency� modes. As we shall see, this
problem also arises for ��10, when the grid resolution is
not sufficient, i.e., whenever the wavelength of the highest
frequencies becomes comparable with the lattice spacing.

It is instructive to investigate the effects of spatial reso-
lution, as measured by the parameter R, representing the
number of nodal points covering the initial healing length.
We start with an under-resolved situation, R=0.448 �corre-
sponding to Ng=2000 nodal points�, and subsequently in-
crease the resolution up to R=28.68 �Ng=128 000�. While
increasing the spatial resolution, we also increase the time
resolution by keeping �t=�z. The elapsed time spent by the
QLB and CN methods is quite similar at all resolutions, with
a mild tendency of QLB to outperform CN at high resolu-
tions �5058 versus 6242 CPU seconds for Ng=128 000 on a
standard PC Intel Pentium 4, 3 GHz�.

The wave-function density is computed by averaging over
the solutions obtained with 100 realizations of the speckle
potential. In Figs. 2 and 3, the averaged wave-function
densities computed by the QLB and CN methods, respec-
tively, at the four spatial resolutions �Ng=2000,8000,
32 000,128 000� are shown and compared with the
asymptotic behavior given by Eq. �14�. In QLB simulations,
pileup at high frequencies and large distances is observed
�see Fig. 2�, which is due to the failure of the adiabaticity
assumption at high energies. The CN solution, on the other
hand, shows a very different behavior at low resolution,

namely, an overlocalization of the wave function �see Fig. 3
for Ng=2000�. This signals the potential “danger” that under-
resolved CN simulations may overestimate Anderson local-
ization.

In Fig. 4, the averaged wave-function densities, computed
at the four different resolutions by the QLB and CN meth-
ods, respectively, are compared. We observe that for Ng
�32 000 the two methods are in good agreement with each
other, as well as with the predicted asymptotic behavior.

−200 −100 0 100 200 300
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−6

10
−4

10
−2

z/L
TF

L T
F

|ψ
(z

)|
2

λ ∼ 1

λ ∼ 5

λ ∼ 10
λ ∼ 20

λ ∼ 50

FIG. 1. �Color online� Averaged wave-function densities com-
puted by the QLB method for five different values of the ratio �
�LTF /h=1,5 ,10,20,50 �top down�. Parameters are set as follows:
�z=5�10−3, m̃=1 /4, VR=0.2�, �R=0.5h, and T=150 /�z. The
delocalization trend at increasing values of � is well visible.
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FIG. 2. �Color online� Averaged wave-function density com-
puted by the QLB method at four different resolutions. The numeri-
cal results are compared with the long-tail asymptotic behavior
given by Eq. �14�. Parameters are set as follows: �z=5�10−3,
�QLB=2, m̃=1 /4, VR=0.2�, �R=0.5h, �=10.997, and T=150 /�z.
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FIG. 3. �Color online� Averaged wave-function density com-
puted by the CN method using the QLB scaling at four different
resolutions. The numerical results are compared with the long-tail
asymptotic behavior described by Eq. �14�. Parameters are set as
follows: �z=5�10−3, �QLB=2, m̃=1 /4, VR=0.2�, �R=0.5h, �
=10.997, and T=150 /�z.
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VI. LONG-TIME DEPLETION

In Ref. �11�, it is argued that the expanding and then lo-
calized BEC might be a long-lived metastable state rather
than a true ground-state solution. If so, the residual self-
interaction should cause a long-term depletion of the BEC.
The question arises as to whether such long-term depletion
really occurs, and, if so, on which time scale. In order to
explore this question, we have performed very long-time
simulations up to time t=15 000 /�z, 100 times longer than
in the previous literature. As previously mentioned, the QLB
scheme is norm preserving due to the unitarity of the colli-
sion matrix, a property that has been verified also for such
long simulations. The global norm 
�+
2+ 
�−
2 is observed
to remain at a unit value up to the sixth digit at the end of our
longest simulation �3�106 time steps�; in particular the
mean value is �
�+
2+ 
�−
2=1.000 000 19 with a standard
deviation of 1.47�10−7, to be compared with the value
3.72�10−8 after 3�105 time steps. These values indicate
that the QLB solver does not seem to suffer from any sig-

nificant degradation in the course of the very long-time simu-
lations.

The averaged wave-function densities at times t
=1500 /�z and 15 000 /�z are compared with the one ob-
tained at time t=150 /�z, as shown in Fig. 5. The BEC is still
well localized, but clearly on the way to losing its localiza-
tion. In particular, by fitting the numerical wave-function
densities with the analytical curve n�z�� �z�−3/2exp�−2��z��,
the following time-decay law for � is found �see Fig. 6�:

LTF��t� =
0.055

��zt�1/3 . �16�

In Fig. 5, the analytical curves obtained with the values of �
given by Eq. �16� for t�z=150, 1500, and 15 000 are also
shown. In Fig. 6, numerical results for LTF� as a function of
�zt are reported and compared with the scaling law Eq. �16�.
For this numerical test, we used the QLB scheme with N
=32 000 nodal points, while other parameters are set as be-
fore. Although a direct comparison with experimental results
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FIG. 4. �Color online� Comparison between the averaged wave-function densities computed by the QLB and CN methods at four
different resolutions. The numerical results are compared with the long-tail asymptotic behavior described by Eq. �14�. Parameters are set as
follows: �z=5�10−3, �QLB=2, m̃=1 /4, VR=0.2�, �R=0.5h, �=10.997, T=150 /�z. Ng= �a� 2000, �b� 8000, �c� 32 000, and �d� 128 000.
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reported in Ref. �38� is not possible, since we are simulating
a BEC with a weaker nonlinearity ���11 instead of �
�114� and with a different value for the ratio �R /h, in Fig.
6 we report the experimental value obtained in Ref. �38� for
�=114, �R /h�0.7, and VR /�=0.2. This last parameter is
the same as in our simulations. The experimental result cor-
responds to a localization length of about Lloc=0.5 mm,
while in our simulation, we obtain Lloc=1.19 mm. The pic-
tures show a clear delocalization trend in the very long-term
evolution of the condensate, thereby supporting the conjec-
ture that Anderson localization is a long-lived metastable
state of the expanding condensate.

VII. CONCLUSIONS

Summarizing, we have investigated Anderson localization
effects in one-dimensional Bose-Einstein condensates sub-
ject to random potentials. To this purpose a QLB scheme has
been used, and compared with the standard Crank-Nicolson
method. The adiabatic approximation underlying the QLB
theoretical framework sets limits on the strength of the self-

interaction potential, which result in a smaller separation be-
tween the Thomas-Fermi scale and the healing length, as
compared to typical experimental values. The QLB simula-
tions indicate that scale separations LTF /h�10 are sufficient
to show clear evidence of Anderson localization. In addition,
very long-time simulations, 100 times longer than in the pre-
vious literature, show evidence of a progressive, if very slow
�t−1/3�, delocalization of the condensate. The QLB scheme is
found to perform competitively with respect to the CN
scheme even in one dimension, and it is consequently ex-
pected to significantly outperform it in higher dimensions
�17�.
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